Stochastic search variable selection for identifying multiple quantitative trait loci.

نویسندگان

  • Nengjun Yi
  • Varghese George
  • David B Allison
چکیده

In this article, we utilize stochastic search variable selection methodology to develop a Bayesian method for identifying multiple quantitative trait loci (QTL) for complex traits in experimental designs. The proposed procedure entails embedding multiple regression in a hierarchical normal mixture model, where latent indicators for all markers are used to identify the multiple markers. The markers with significant effects can be identified as those with higher posterior probability included in the model. A simple and easy-to-use Gibbs sampler is employed to generate samples from the joint posterior distribution of all unknowns including the latent indicators, genetic effects for all markers, and other model parameters. The proposed method was evaluated using simulated data and illustrated using a real data set. The results demonstrate that the proposed method works well under typical situations of most QTL studies in terms of number of markers and marker density.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identifying Quantitative Trait Loci in Experimental Crosses Committee in Charge: Identifying Quantitative Trait Loci in Experimental Crosses

Identifying quantitative trait loci in experimental crosses Identifying the genetic loci responsible for variation in traits which are quantitative in nature (such as the yield from an agricultural crop or the number of abdominal bristles on a fruit y) is a problem of great importance to biologists. The number and eeects of such loci help us to understand the biochemical basis of these traits, ...

متن کامل

Bayesian model choice and search strategies for mapping interacting quantitative trait Loci.

Most complex traits of animals, plants, and humans are influenced by multiple genetic and environmental factors. Interactions among multiple genes play fundamental roles in the genetic control and evolution of complex traits. Statistical modeling of interaction effects in quantitative trait loci (QTL) analysis must accommodate a very large number of potential genetic effects, which presents a m...

متن کامل

A model selection approach for the identification of quantitative trait loci in experimental crosses

We consider the problem of identifying the genetic loci (called quantitative trait loci (QTLs)) contributing to variation in a quantitative trait, with data on an experimental cross. A large number of different statistical approaches to this problem have been described; most make use of multiple tests of hypotheses, and many consider models allowing only a single QTL. We feel that the problem i...

متن کامل

Effects of Marker Density, Number of Quantitative Trait Loci and Heritability of Trait on Genomic Selection Accuracy

The success of genomic selection mainly depends on the extent of linkage disequilibrium (LD) between markers and quantitative trait loci (QTL), number of QTL and heritability (h2) of the traits. The extent of LD depends on the genetic structure of the population and marker density. This study was conducted to determine the effects of marker density, level of heritability, number of QTL, and to ...

متن کامل

Locating multiple interacting quantitative trait Loci with the zero-inflated generalized poisson regression.

We consider the problem of locating multiple interacting quantitative trait loci (QTL) influencing traits measured in counts. In many applications the distribution of the count variable has a spike at zero. Zero-inflated generalized Poisson regression (ZIGPR) allows for an additional probability mass at zero and hence an improvement in the detection of significant loci. Classical model selectio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genetics

دوره 164 3  شماره 

صفحات  -

تاریخ انتشار 2003